AFRL-IF-RS-TR-2001-204
Final Technical Report
September 2001

PN
“ g

INFORMATION ASSURANCE TECHNOLOGIES
FOR THE GLOBAL COMMAND AND CONTROL
SYSTEM (GCCS) LEADING EDGE SERVICES (LES)

Secure Computing Corporation

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. F507/J318

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

Copyright © 2000, Secure Computing Corporation. All Rights Reserved. This material may
be reproduced by or for the U.S. Government pursuant to the copyright license under the
clause at DFARS 252.227-7013 (Oct.88).

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

20020610 032

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2001-204 has been reviewed and is approved for publication.

APPROVED: 7/32 ay S L)y,:(

MARY L. DENZ
Project Engineer

FOR THE DIRECTOR: WQ/’ 7"
V/ V

WARREN H. DEBANY, Technical Advisor
Information Grid Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFGB, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

INFORMATION ASSURANCE TECHNOLOGIES FOR THE GLOBAL
COMMAND AND CONTROL (GCCS) LEADING EDGE
SERVICES (LES)

Richard O’Brien

Contractor: Secure Computing Corporation

Contract Number: F30602-97-C-0245

Effective Date of Contract: 22 June 1997

Contract Expiration Date: 31 October 2000

Short Title of Work: Information Assurance for the
GCCS LES

Period of Work Covered: Jun 97 - Oct 00

Principal Investigator: Richard O’Brien
Phone: (651) 628-2765
AFRL Project Engineer: Mary L. Denz
Phone: (315) 330-2030

APPROVED FOR PUBLIC RELEASE;DISTRIBUTION
UNLIMITED.

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored
by Mary Denz, AFRL/IFGB, 525 Brooks Road, Rome, NY.

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704.0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, mcludng the time for reviewing instructions, searching existing dala sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, 1o Washington Headquarters Services, Duectorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202 4302, and to the Dffice of Management and Budget, Paperwork Reduction Project {0704-0188), Washington, DC 20503

1. AGENCY USE ONLY /Zeave biank) 7. REPORT DATE 3. REPORT TYPE AND DATES COVERED

OCTOBER 2001 Final Jun 97 - Oct 00
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
INFORMATION ASSURANCE TECHNOLOGIES FOR THE GLOBAL C - F30602-97-C-0245
COMMAND AND CONTROL (GCCS) LEADING EDGE SERVICES (LES) PE - 63760E

PR - F025

5. AUTHOR(S) TA- 11
Richard O'Brien WU - 32
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSIES) 8. PERFCRMING ORGANIZATION
Secure Computing Corporation REPORT NUMBER
2675 Long Lake Road
Roseville Minnesota 55113 N/A
9. SPONSORING/MONITORING AGENCY NAME(S} AND ADDRESSIES) 10. SPONSORING/MONITORING
Defense Advanced Research Projects Agency Air Force Research Laboratory/IFGB AGENCY REPORT NUMBER
3701 North Fairfax Drive 525 Brooks Road
Arlington VA 22203-1714 Rome New York 13441-4505 et gL

11. SUPPLEMENTARY NOTES
Air Force Research Laboratory Project Engineer: Mary L. Denz/IFGB/(315) 330-2030

.

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
APPROVED FOR PUBLIC RELEASE;DISTRIBUTION UNLIMITED.

13. ABSTRACT (Maximum 200 words/
Information Assurance Technologies for the Global Command and Control System (GCCS) Leading Edge Services (LES)

program was sponsored by DARPA's Information Systems Office. This report describes the different technology areas the
program encompassed, summarized the major achievements of the program, and documents lessons learned and open issues.
The technology areas were: (1) Security Architecture. The intent was to provide support for the transition of DARPA
technology to operational users and on developing a system security and adversary model that could be used for architectural
analysis of the system and information warfare simulations. (2) Distributed Object Security. The primary focus of the work
was on CORBA related security with a goal to develop an integrated approach for enhancing the security of 2 CORBA
system. To this end, a proxy for passing the CORBA network protocol, IIOP, through a firewall was developed and
implemented on the Sidewinder firewall, and access control mechanisms were implemented to provide security checks on
invocation of CORBA methods. (3) Single Sign-on Identification and Authentication. The goal was to develop a single
sign-on authentication solution that would eliminate the need to multiple logins when using different applications. (4) Role
Based Access Control (RBAC). This technology area used to RBAC model to provide a unified high-level view of the system|
for administering a system's security policy that would hide the details of the heterogeneous low-level policy and
enforcement mechanisms from the security administrator.

14. SUBJECT TERMS 15. NUMBER OF PAGES

CORBA, Single Sign-On Identification and Authentication, Distributed Object Security, Role 40

Based Access Control, Security Architecture 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 1. SECURITY CLASSIFICATION 20. LIMITATION OF

OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

Standard Form 298 gRev. 2-89} (EG)
Prescribed by ANSI Std. 239.18

Dasigned using Peiform Pra, WHS/OIOR, Oct 93

1

TABLE OF CONTENTS

OVERVIEW 1
1.1 INTRODUCTION ...evoveriestesesereasesensssesissestesssssssasssssassssossasstsssnesasan st sa st Lo bt e s s s ra SRt s s s st s et 1
1.2 ACCOMPLISHMENTS .. oeciiteesieectessnirtesnssrssesesatsstsssnsa s ae et et s b s b e s s r st s e b bt st s st sa s 2
1.3 DOCUMENT ORGANIZATION....corvvtieimiurrioeasenesististinsinesiiasssssesssssussessatieastsesstenisssssssisannsiasnsssssossnsines 3

TECHNOLOGY OVERVIEWS 5
2.1 SECURITY ARCHITECTURE ..ceeeitisierriresirntteneresitetisteiistssessrans st tsae b s s ss s st s s sas s s bt s n s n s msan s e 5

2.1.1 CRECKINGLE «..eeoeeeeeeeeeeesereeereeseasseserssassas st e b s s b se s e b e e s e b e mdes e s h SR b e e s n s s bttt bttt 5

212 CONSUIING oot s 10
22 ROLE BASED ACCESS CONTROLcvtritreiuerivsesstiisiniinsisntsessesntiastsssscsastesatesassssb it s esanns s sansensnts 10

22,1 NAPOICOM ... 10

222 FUIUIE DIFECHONScoeeeveetveresseaconeeesenessssssnsses st ast ot s b st ba s b0 13

203 LeSSONS LEAINE.......oeoeeeeeveeecreini ittt s et b 13

224 POLICY WOPKSROP.ccveevvrevnivnsivississsisss bbb 14
2.3 IDENTIFICATION AND AUTHENTICATION ...occeiiiiiiiiiiiiminititionessoinnnsisnsasnssassasasisssnssesnnnsesenonscesess 16

2.3.1 Single Sign-0n AGENLocuevevivmiinciiineinai st s e 17

2.3.2 Single Sign-om Web PIUZIN.........ccccummimmmimiiiiisst ettt 18
2.4 DISTRIBUTED OBJECT SECURITY ...vvviierrireeninneissisnueiinunninisnssessssnsosnssnasnasnase w21

241 TIOP PrOXY ..ooooeveeeerevsesesseas s s s R 21

242 CORBA ACCESS CONITOL.c......oovirieeeercircniininiisisssisasssesss et s reas st s st st e 23

2.4.3 DCOMSHUAYoeooreeeseeeiriiirieirisie st s .25

SUMMARY 28

REFERENCES 29

TABLE OF FIGURES

Figure 1. The Checkmate ATChIitECIUIEc.ovuiiviiiniiiiii e 6
Figure 2. Checkmate Simulation EnVIronment.......coovueuivrimimminissssis e 8
Figure 3. The Napoleon Design TOOL ...t 11
Figure 4. PoOlicy FrameWOTK......cocovuerueimiiniiniininiisisin sttt 15
Figure 5. Windows Single Sign-0n AZEntcooevrieumciiiiisemimmnisnsiss e 17
Figure 6. Single Sign-on Web Plugin ArchiteCtureocoocvvvuinimnsmismmssrissinenensessnees 19
Figure 7. TIOP Proxy COnfIgUration..........ccoeeueiueeuemssisseseememmsnisniisiisnis st encenssnees 22
Figure 8. CORBA Access Control Using INterceptorsceunumimmisiississsissnnssesceinsnees 24
ii

1 Overview

This document is the final report for the Information Assurance Technologies for the
Global Command and Control System (GCCS) Leading Edge Services (LES)
program (hereafter referred to as the IAT program) sponsored by DARPA’s
Information Systems Office. It describes the different areas that the program
encompassed, summarizes the major achievements of the program, and documents
lessons learned and open issues.

1.1 Introduction

This section contains a brief description of the technology areas that the program
covered. More detailed overviews of the technical work are contained in Section 2.

The IAT program was an umbrella program that encompassed four different areas in
the information assurance field. These areas were:

e Security Architecture. This work was originally intended to be a consulting role
on the development of the GCCS LES security architecture. As the IA program
developed, however, the focus changed to providing support for the transition of
DARPA technology to operational users and on developing a system security and
adversary model that could be used for architectural analysis of the system and
information warfare simulations. Under this task, Secure Computing participated
in DARPA’s “PI at the Front” program and various DARPA A workshops. We
also developed the Checkmate network security model and prototyped the
Checkmate network security modeling tool that provides a security simulation and
analysis capability.[1][2][3]

e Distributed Object Security. The objective of the distributed object security work
was to identify the gaps between the security that commercial distributed
architectures provide and the security requirements that DARPA is trying to
address for its operational customers, and then to attempt to address these gaps
via IA technology. The primary focus of the work was on CORBA related
security, and our goal was to develop an integrated approach for enhancing the
security of a CORBA system. To this end, a proxy for passing the CORBA
network protocol, IIOP, through a firewall was developed and implemented on the
Sidewinder firewall, and access control mechanisms were implemented to provide
security checks on invocation of CORBA methods.[12][13] A study on DCOM
security was also performed and recommendations made on what might be done
to enhance it.[11]

e Single Sign-on Identification and Authentication. The single sign-on I&A goal
was to develop a single sign-on authentication solution that would eliminate the
need for multiple logins when using different applications. An initial prototype
was developed for Windows systems that could be used when fiping or telneting
to another system. The prototype showed that the approach of transparently
intercepting application login requests and performing the login for the user was
feasible but was very application dependent. Having proven the principle of the

approach, the decision was made to focus the remaining work on providing a
single sign-on approach for web-based applications that would work across
multiple web servers in a domain. A web plugin was developed that would
perform the initial authentication of a user and create a cookie for use in
automatically logging on to other web servers in the same domain.[10] Secure
Computing’s commercial division eventually adapted the plugin for use with its
SafeWord authentication server.

Role Based Access Control (RBAC). In this area, the objective was to use the
RBAC model to provide a unified high-level view of the system for administering
a system’s security policy that would hide the details of the heterogeneous low-
level policy and enforcement mechanisms from the security administrator. A
model and tool was developed, called Napoleon, that presented a layered view of
the various components of the system and allowed roles to be defined that
spanned a wide variety of enforcement mechanisms.[4][5S] Napoleon also
provides a translation capability that can map high-level role based policies to the
low-level mechanism specific policies that are needed to enforce the high-level
policy. This allows a system administrator to maintain system policies at a high-
level without worrying about how the policies should be represented on specific
enforcement mechanisms. A number of papers describing Napoleon were written
and presented at various conferences.[6][7]1[8][9]

In addition, Secure Computing supported the integration of our work into
experiments at the IA Technology Integration Center (TIC). In particular, as part of
this integration support, Secure Computing ported Boeing’s IDIP code to the
Sidewinder firewall.

1.2 Accomplishments
On this program, the following specific accomplishments were achieved.

Secure Computing developed a comprehensive system security model that
includes models of the network topology and network components, mission
objectives and adversary characteristics, and a database of component
vulnerabilities. The model can be used as the basis for Course of Action analysis
tools and Intrusion Detection and Response simulations.

A network security analysis tool, called Checkmate, that is based on the model
was prototyped and evaluated. The final prototype allows modeling of a useful
subset of the services typically provided by a distributed system. The prototype
allows a live attacker to selectively attack a static (configured at initialization)
system model and determine the impact on system services. Checkmate is
currently being enhanced on other programs to provide a network security
simulation environment.

A paper describing the Checkmate model and security analysis tool was prepared
and presented at Milcom 2000[3].

A paper suggesting some possible new modeling paradigms for COTS based

command and control systems was prepared and presented at the 1999 New
Security Paradigms Workshop[15].

e Secure Computing develop the Napoleon Role Based Access Control (RBAC)

model for unifying security policy management across heterogeneous network

~ components. The model supports semantic layers, such as wrappers, that combine
multiple mechanisms and translation components.

e The Napoleon tool, based on the model, was developed to support easy definition
of consistent local and system-wide RBAC policies in distributed object
architectures and then to automatically map these policies to enforcement
mechanisms. Mappings were developed for CORBA, DTEL++, DCOM and NAI
Labs data-driven generic wrappers.

e Secure Computing performed a study that investigated how the Napoleon RBAC
approach could be integrated with the CORBASEC V2 Rights functionality.

e Papers on the Napoleon work were prepared and presented at ACSAC98[6], the
1999 ACM RBAC Conference[7], ACSAC99[8], and Milcom2000[9].

e Secure Computing developed a prototype IIOP proxy on our Sidewinder firewall.
A joint whitepaper was written with NAI Labs on issues in proxying IIOP traffic
through a firewall.

e Secure Computing developed and prototyped an interceptor based approach for
adding object based access control to CORBA applications. The interceptor
technology was integrated with the Open Group’s Pledge policy management
system and with Napoleon.

e Secure Computing performed a DCOM security study that reviewed the DCOM
security approach, identified gaps in the approach and suggested possible
solutions using IA technologies. Use of a DCOM interceptor for fine-grained
access control was prototyped.

e Secure Computing developed a prototype of an agent based single sign-on system
for Windows NT.

e Secure Computing developed a web plugin that supports single sign-on. The
plugin technology was transitioned to our commercial products.

o Secure Computing supported other DARPA programs in a number of ways
including integration of Boeing’s IDIP technology into our Sidewinder firewall
and integration of the Napoleon RBAC policy management tool with Network
Associates’ DTE and generic wrapper technologies. Tom Markham also acted as
an IA Pl-at-the-front in support of DARPA-PACOM cooperative activities.

1.3 Document Organization
The remainder of this document is organized as follows.

e Section 2 contains a more detailed description of the various technology areas

including the advances made, possible future directions and lessons learned.

e Section 3 presents a short summary of the program.

e Section 4 includes a list of cited and program-produced documentation.

2 Technology Overviews

In this section each of the four different areas of technology development identified in
Section 1.1 is discussed in more detail.

2.1 Security Architecture

In the security architecture area, Secure Computing developed the prototype Checkmate
network security modeling tool and supported DARPA’s technology transition efforts.

2.1.1 Checkmate

Effective reasoning about system attacks and responses requires a comprehensive
model that covers all aspects of the system being analyzed, from network topology
and configuration, to specific vulnerabilities, to possible adversary capabilities and
possible attacks. A comprehensive model can be used as the basis for real-time
attack/response simulations, “what if” course of action analysis, policy simulation
and debugging, and more. To address this need, Secure Computing developed a
system called Checkmate, a prototype network security model and tool for
representing and investigating the security of real-world networks.

The Checkmate model represents the topology and configuration of network
components such as servers, workstations, routers, and firewalls. The model also
includes potential network operations (including vulnerabilities), mission-critical
files and services supported by the network, and characteristics of potential attackers
and defenders in a manner that allows security analysis to be performed.

The model represents network operations (including vulnerabilities) at the service
level with an abstraction of each service’s functionality. Each operation has a set of
preconditions and a set of effects. Examples of preconditions include the operating
system and service versions to which the operation applies and client resources
required by the operation. The effects of an operation can include changing the state
of a node or protocol, routing to a new node or changing to a new protocol, triggering
alarms, and discovering resources that may be used as parameters in future attack
actions. When applied to a node, some operations fail because of defenses, proper
configuration or other security policy implementation. Some of the operations
perform normal network functions. Many of the operations exploit weaknesses that
have the effects described in attack and vulnerability databases. These effects may
change the state of the system, removing the defenses against attacks on other
services.

The Checkmate tool simulates attacker and defender interactions using the
Checkmate model to represent the network, operations, and missions. The tool
provides a state-space representation of the network under test. A particular network
can be analyzed by investigating possible attacks on the network based on the
vulnerabilities in the model.

Manual Results

Processing

Network
Definition

Service
Simulation Manual

Java Engine 4
Database Processing

Gaming
Database

“The Model”
Objectives

Figure 1. The Checkmate Architecture

With the Checkmate tool, an attacker attempts to gain access to components in the
simulated network, extract or alter confidential information, and shut down critical
services without raising alarms that would indicate the attacker’s presence. In order
for the attacker to execute a particular exploit, it may be necessary for the attacker to
execute vulnerabilities in several protocols on different systems.

A defender attempts to block an attacker’s actions while maintaining the availability,
security, and integrity of mission critical data and services. The defender does this
by monitoring alarms and appropriately modifying the defense parameters of nodes in
the simulated network. Characteristics of a node’s configuration that a defender can
modify include operating system brand and version installed, services and versions
installed, service-specific settings (e.g. does the FTP server allow writes), password
strengths and access levels, and firewall or router filtering rules.

In its interactive mode, the Checkmate tool provides a vehicle for information war
gaming. Adversaries attack the system and defenders dynamically adjust defenses to
counter the attack. Because Checkmate uses actual network configurations and
vulnerabilities, such war gaming could also be used to train defensive and offensive

information warriors.
The architecture of the prototype, illustrated in Figure 1, is client-server based. The

Checkmate server maintains the network model, service and vulnerability database,
mission objectives, and current system state. The system is modeled at the service

level (e.g., £tp, rlogin, and snmp) with an abstraction of each service’s
functionality as described in the system’s help manuals. Specific service
vulnerabilities and the service versions that contain the vulnerability are part of the
model, and are obtained from a variety of vulnerability and attack databases, such as
CERT[16], Bugtrag[17], and rootshell[18]. The level of the model is designed to
contain enough information to be a useful representation without being overly
detailed.

The simulation works as follows. Using an attack script generated off-line, an
automated attacker client submits the sequence of actions in the script to the
Checkmate server for processing. The actions could be timed in such a manner as to
represent an actual automated attack, for example, one action per second. The server
evaluates the attack action and applies the effects of that action to the modeled
network.

The autonomic response tool acts as an automated defender client. It receives alarms
that are triggered by the attack from the Checkmate server. In response to specific
alarms, it may dynamically modify the defense configurations of individual nodes.
Attack actions are processed in the order they appear in the attack script. By
monitoring alarms and appropriately modifying the defense configurations of nodes
in the modeled network, the defender client can block an attacker client. The attacker
client continues to process the attack script until an action fails.

2.1.1.1 Future Directions
Currently, Checkmate development is continuing in two areas:

e On a subcontract to Honeywell Technology Center’s (HTC) CIRCADIA program,
sponsored by DARPA, Checkmate is being enhanced to provide a network
simulation environment for testing autonomic intrusion response tools. The
approach is described below.

e Lawrence Livermore National Laboratory (LLNL) is funding Secure Computing
to integrate Checkmate into their IOWA environment to provide a simulation
environment.

Some of the possible future applications for the Checkmate technology are discussed
below.

Simulations

The Checkmate tool could be used to provide a simulation capability for testing and
evaluating intrusion response tools, among other things. The simulation environment
is illustrated Figure 2.

Autonomic

Alarms ————— Intrusion

Response

Checkmate Dynamic
Stmulation @——— Defense’
Configuration
- Test
Results

Figure 2. Checkmate Simulation Environment

The resulting simulation environment could be used to measure the effectiveness of
intrusion response tools in providing an autonomic response to detected intrusions.
The coverage that the response tool provides could be measured by automating a
wide variety of attacks and determining which ones the tool is capable of detecting
and deflecting. The real-time nature of the response could be measured by running
the attack scripts at different speeds and then determining if there is a point at which
the attack is coming too fast for the tool to effectively respond.

Course of Action Analysis

The Checkmate tool could be used as a course of action tool to provide feedback on
the implications of a particular system being compromised, to help predict which
systems might be attacked next, to suggest possible responses, and to analyze the
overall implications of a particular response. Checkmate would be able to provide
“what if” analysis that could identify the security ramifications of installing a new
service or policy, or the consequences of a particular system being compromised.

Policy Simulation and Debugging

A policy simulation and debugging capability could be developed using Checkmate.
Policy definition tools, such as Napoleon, could be used to define and then translate
the policies to the Checkmate model. Simulations could check things such as:
connectivity for certain applications, availability, and why a requested access failed.

Game Playing and Training

In its interactive mode, Checkmate provides a tool for information war gaming.
Adversaries attack the system and defenders dynamically adjust defenses to counter
the attack. Since Checkmate uses actual network configurations and vulnerabilities,
such war gaming could also be used to train defensive and offensive information

warriors.

2.1.1.2 Lessons Learned

The original objective of the Checkmate work was to determine whether a network
could be modeled in enough detail to be able to perform meaningful security analysis
of the network by using the model. The success of the Checkmate prototype, and its
use by HTC and LLNL, indicates the feasibility of the approach. However, a number
of issues have been identified that would need to be addressed before Checkmate
could be a general purpose analysis tool. Some of these are:

Network Discovery

An evaluation of the Checkmate tool was performed on the IAT program to
determine its usability and effectiveness. As part of this evaluation, the network that
was being used for the DARPA IA Integrated Feasibility Experiment(IFE) 2.3 was
represented in the Checkmate model. Since Checkmate does not support automated
network discovery, entering the data into the model was an extremely labor-intensive
effort. Clearly, if Checkmate is to be used on a wider basis, some form of automatic
network discovery that could populate the model is required. There are a number of
commercial and research tools that could help solve this problem, and some of our
work with LLNL is also addressing it, but the amount and extent of the information
needed by the Checkmate model might require an agent based, information gathering
approach.

The Vulnerability Database

Checkmate’s analysis depends on the timeliness and completeness of the
vulnerability database that it uses. This vulnerability database is relatively detailed
and includes actions that might result from the vulnerability being exploited as well
as defenses against the vulnerability. Currently, the only way to populate the
database is via a manual process that involves scanning well-known sources of
vulnerabilities and attacks, such as CERT, bugtraq and rootshell, extracting from
them the information needed, and coding it in a form that Checkmate understands.
Although each vulnerability only needs to be categorized once in this manner, it is
still a time-consuming process and makes it difficult to maintain the currency of the
database.

To solve this problem, it would be useful for the security community to develop a
comprehensive vulnerability classification scheme that includes all of the information
that Checkmate requires in a machine processable format. While some efforts are
underway in this area, such as MITRE’s CVE work, they are only modest beginnings
on what really is necessary to allow tools to be built that could easily import
vulnerability databases and reason using them.

In addition, to provide more significant analysis capability, an attack signature
database is necessary. This database would model complex attacks based upon
characteristic network configurations and upon characteristic events observed during
the progress of the attacks. Attack signatures could be developed from well-known

attack, exploit, and vulnerability descriptions, full-disclosure discussion lists and
Web sites, commercial vendor information, and interviews with expert practitioners
in the field of information warfare. Using attack signatures rather than specific
vulnerabilities would allow generic attacks to be identified that work if certain easily-

identified preconditions hold.

2.1.2 Consulting

In the consulting area of the security architecture task, Secure Computing participated
in a variety of IA workshops and activities, was actively involved in the “PI at the
front” effort, and wrote or co-wrote papers including:

e An architecture and design document for composable identification/authentication
and authorization services. This was done as part of the initial composable
services effort of the IA program.

e A paper on security modeling, co-authored with Mary Denz of AFRL, that was
presented at the New Security Paradigms Workshop in 1999.[14] The objective
of the paper was to stimulate discussion on the future of security modeling. It
asserted that top down security modeling is non-existent today and suggested
some possible modeling paradigms for COTS based command and control
systems.

2.2 Role Based Access Control

In the RBAC area, Secure Computing developed the Napoleon RBAC policy
management tool and initiated the first IA Policy Workshop.

2.2.1 Napoleon

Napoleon is the name of the framework and set of RBAC tools for management of
local and system wide security policies that Secure Computing developed under the
IAT program[4] [5]. The effort emphasized a practical approach that does not require
existing applications to be rewritten so that they can be incorporated into the
framework. The result is a security administration umbrella that incorporates a wide
variety of access control mechanisms.

The general RBAC concept involves:

e defining the set of roles for the system. A role is a set of permissions needed to
perform some job function. For example, what access does a mission planner
need to a database? What access does the flight crew need to the database?
These permissions are bundled together into the mission planner role and the
flight crew role.

o defining the objects to which each role has access and the particular operations
that someone in the role can perform on each object

e associating each user with the roles they can perform on the system

10

e associating a current role with each user that identifies in which role the user is
currently operating.

A user can only access an object if the permissions in their currently active role allow
it.

RBAC policies are currently receiving much attention, and mechanisms that can be
used to support such policies, either directly as in database roles or indirectly as in
CORBA rights, are being developed and deployed commercially. The goal of this
effort was to develop a framework and a tool that allows all of the different types of
RBAC systems to be incorporated into a unified environment.

The Napoleon approach is illustrated in Figure 3. Napoleon has two parts:

e a GUI design tool that allows the administrator to create roles in a natural way by
using the Napoleon policy layer model,

e a set of policy translators that map roles from the model into the legacy security
mechanisms that actually enforce the policy. ‘

Access
Control

Users Assigned

to Keys and key
Chainc Py
Layers hide . e Local System Administration
T
detaile

Keys grouped
into key chains
create role
hierarchy

Translated
Q Policy

Semantic Laver(s)

- ’ Apbplication Developer Laver

Keys are policy
building blocks _—-/_-\-——

Layers

divide and Java GUI Translator
for each for each
conquer 8
mechanicm mechanism

Figure 3. The Napoleon Design Tool

11

The Napoleon approach provides the following advantages:

e roles can be defined for an entire network of diverse mechanisms and applications
using a single, simple tool, without worrying about how the roles are
implemented on the various systems

e role translators that map the policy to a specific enforcement mechanism hide the
implementation details from security administrators

e the role translators can be analyzed to ensure they perform the mapping from role
definitions to role enforcement mechanisms in a correct manner

e addinga new enforcement mechanism only requires creating a role translator
e an intuitive interface to the role concept, keys and key chains, is provided

e a distinct design layer is used to provide structure to the complicated task of
designing security policy.

To make the abstract concept of a role more concrete, the Napoleon design tool uses
a concept understandable by all users, the key. In the real world if a person possesses
a key to a door, they can access all the resources behind the door. In Napoleon if a
user is given a key they have access to the resources represented by that key. For
example, a Napoleon key may represent read access to a set of files, or the ability to
update a database table.

In the real world the set of resources to be protected is small. Usually a person needs
less than ten keys. On a computer network the number of resources to be controlled
is staggering. A file system alone may contain 10,000 different files that need to be
controlled. If the system administrator had to assign one key to a user for each file
the user could access, the job would never be done.

Napoleon provides two concepts to aid in scaling up to control a larger set of
resources. The first is the key chain. The key chain is simply a collection of keys. If
a user is given a key chain, they can access all the resources associated with all the
keys on the key chain. As in the real world, a key chain may contain other key
chains. For example, all your work related keys may be on one ring, and your home
keys, on another. In Napoleon key chains are used to group related keys into
convenient sets. For example, several file keys relating to mission planning could be
combined into a single key chain. Now the new “mission planning” key chain could
be given out to users in one operation.

Policy layers are the second concept that increases scalability. Policy layers organize
keys and key chains into related areas. For example, all the mission planning keys
and key chains that control database resources are in a single layer. Each application
or mechanism gets it own layer. The major benefit of layers is that it allows the
application developer to group application resources into convenient sets. As a
result an application can be installed on the network with some of the policy already
built, saving the system administrator a great deal of effort. Layers are a design
paradigm that greatly simplify the creation of security policies.

12

The Napoleon design tool presents a standardized, intuitive version of roles to the
policy developer. All details on how the roles are actually implemented within
applications are hidden by the layer feature. The policy designer combines keys and
key chains to build policy. The Napoleon design tool saves the policy as an XML
file.

The role translators take the XML file and generate an appropriate representation of
the policy for the target enforcement mechanism. The enforcement mechanism might
require new configuration files or an administrative command to change the policy.
Secure Computing has built role translators for several enforcement mechanisms:

e the LOCKG6 decision server that SCC created to enforce fine grained policies for
the CORBA environment using CORBA interceptors

e the Adage/Pledge decision server that the Open Group Research Institute (OGRI)
developed[21] and SCC integrated into the CORBA environment using CORBA
interceptors

o the DTEL environment for enforcing fine grained CORBA policies developed by
NAI labs[19], and

e the data driven process wrappers developed by NAI labs[20].

To summarize, Napoleon is an RBAC solution to policy management. Napoleon
provides several unique features such as key and key chains and policy layers to
provide structure and ease the challenging task of managing security policy.

2.2.2 Future Directions

Napoleon development is continuing on a Phase II SBIR from NIST. On that
program the Napoleon model is being enhanced to include workflow policies and to
handle some simple constraints. In addition, a number of Napoleon concepts have
been transitioned to other programs, such as DARPA’s Autonomic Distributed
Firewall and AFRL’s Kernel Loadable Wrappers, that require policy management.

2.2.3 Lessons Learned

The Napoleon work demonstrated that role based access control is a viable approach
for unifying the policy management of various heterogeneous enforcement
mechanisms. It also validated the layered approach to specifying policy.

User testing was performed to help pinpoint areas where future improvements could
be done. A number of issues with the current tool were identified, such as the need
to specifically import keys from lower layers before they could be used at a higher
layer and the need to create key chains out of keys before they could be imported.
Many of these issues are being addressed on the NIST program.

While the Napoleon model included the notion of constraints to add granularity to a
policy and allow specific conditions, such as the time of day or an attribute value of a
particular object, to be included in the policy, these constraints were never

13

implemented in the Napoleon tool. The issue with constraints is not in specifying
them using Napoleon (this could be easily done), but is primarily with mapping the
constraints to appropriate enforcement mechanisms. For some types of constraints,
such as date or time of day, there may be enforcement mechanisms that could be used
to enforce the constraint, but for many others, such as those that depend on an
attribute value of an object, no current enforcement mechanisms support enforcement
of the constraints. Hence, without creating one’s own enforcement mechanism, these
types of constraints are not practically useful. In summary, the lesson learned is that
specifying policy constraints is of no use unless there are enforcement mechanisms
that are capable of enforcing the constraints.

2.2.4 Policy Workshop

As part of the RBAC task, Secure Computing organized a Policy Workshop that was held
at BBN in May 1998. Other participants were BBN, Open Group Research Institute and

NAI Labs (at that time, TIS).
The major technical goal of the workshop was to:

e Develop an IA program-wide Policy Server Architecture/Framework that
includes:

e policy definition and management for a wide variety of policies
e policy enforcement in both CORBA and non-CORBA environments
e a uniform user interface.
An additional programmatic goal was to:
e Develop a plan for implementing the Policy Server Architecture/Framework that:
e builds on and integrates the work that programs have already done
e avoids duplication of effort across programs

e provides each program the opportunity to make a meaningful contribution to
the overall architecture/framework.

This section will summarize the technical results of the workshop only.

Results

A major result of the workshop was the definition of a preliminary policy
architecture/framework that could provide a common vocabulary for use in future
policy discussions on the IA program. The architecture is shown in Figure 3.

14

App Security . . .
Developer Administrator Policy Simulation
'''' o OO
¥ K
$ $ >
r._w, . n
Application Policy T, ;BM }..__-B, E
Policy Loader Definition A -
—> T e
Policy - Policy Policy
Discovery it < Storage —> Distribution
* {
| *Transmission
E Policy *Projection
e cccmmmm e === Decision/ ‘Translation
Enforcement

Figure 4. Policy Framework

Components of the Policy Architecture/Framework:

1. Policy Definition: handles creating, modifying and deleting policies and policy

elements. This area provides the user interface for manipulating policies.

Policy Storage: handles persistent, centralized storage of the high level policy
according to a well-defined policy schema. Policy storage could be done via a
DBMS.

Policy Distribution: handles transmission, projection and translation of the high
level policy, as stored in the policy storage component, to the policy enforcement
mechanisms. Transmission refers to the means by which the policy is
communicated to the enforcement mechanisms; projection refers to the process of
identifying what portions of the high-level policy are the responsibility of each
particular enforcement mechanism; and translation refers to the process of
mapping the projected policy to the particular form used by the enforcement
mechanism to represent the policy it enforces.

Policy Decision/Enforcement: handles run-time policy decisions and mechanism
specific enforcement. This area includes storage of the translated policy in an

15

appropriate low-level format for rapid decision making. As in the policy
distribution area, there are a variety of decision/enforcement mechanisms that
must be supported, including application component frameworks such as
CORBA, COM and Enterprise Java Beans, operating systems, network
components such as firewalls and filtering routers, authentication systems, and
intrusion detection systems.

5. Application Policy Definition/Loader: provides the means for application
developers/analysts to define policy components as part of their application and
for loading external policy elements into the policy storage.

6. Policy Discovery: provides the ability to identify low-level policies that are
actually being enforced and compare these policies to the high-level policy
statements to check for consistency.

7. Policy Simulation: provides the ability to simulate changes to the policy and
determine their effect on the overall security of the system. Policy simulation is
an additional component that is needed but is not explicitly a part of the policy
server architecture/framework. Such a capability could be used by planners who
need to modify policy as part of a re-plan and would like to understand better

what the policy modifications imply.

Scope

The policy server architecture/framework described in the report focuses on solving
the policy management and enforcement problem within a single policy domain
controlled by a central Command and Control desk. Extending the work across
multiple policy domains is not addressed.

A variety of policies can be supported by the framework including authentication,
authorization, confidentiality, integrity, quality of service, and intrusion/detection.
While the framework supports flexible policies, the amount of flexibility needed to,
for example, express constraints such as time, location or previous accesses, is not
yet fully known and additional real-world examples will be needed to clarify this.
The framework is aimed at supporting a wide range of applications and systems, both
new and legacy: including distributed applications based on CORBA, COM, Java
RMI, and the web; email applications; operating systems such as NT and Solaris;
routers and firewalls; authentication servers; dial-in servers; and others.

2.3 Identification and Authentication

The objective of the Identification and Authentication (I&A) task of the IAT project
was to develop a single sign-on approach to address the need for multiple different
passwords for different applications. Work was performed in two areas:

e Development of a single sign-on agent on a Windows NT system
e Development of a single sign-on plugin for a web browser.

Each is discussed in more detail below.

16

2.3.1 Single Sign-on Agent

The original I&A work was focused on developing a single sign-on approach that
could be used on a Windows system for standard applications. The approach chosen
was to use a single sign-on agent that the user would authenticate to once via strong
authentication using tokens. The agent would then handle all future logins.

Application

L — “ Servers

x Authentication

Server

Figure 5. Windows Single Sign-on Agent

An agent was developed for Windows NT that provided a single sign-on capability
for telnet or fip to other systems. Initially the user would login to the agent to unlock
the user passwords and/or pins that the agent had stored. This login was performed
using the RADIUS authentication standard to communicate with an authentication
server. The authentication could be hardware based or password based. The agent
built up its password list automatically by monitoring logins that the user had done
previously and capturing the server, application and password. Once initialized, the
agent would intercept the telnet and ftp login requests that were sent by a server and
then would respond with the correct password. The agent included a software based
authentication token so that one-time passwords could be computed automatically. A
demonstration of the system was given at the Integrated Feasibility Demo 1.2.

2.3.1.1 Future Directions

As discussed in the Lessons Learned section below, the approach relies on the agent
understanding portions of any protocol for which it is providing a single sign-on
capability. After developing the telnet and ftp single sign-on capabilities, it was
decided that adding other protocols, one at a time, was not a cost-effective approach
to the problem, and that a more useful focus for the task would be on providing a

17

single sign-on capability for web based applications. Hence, no further work was
done on the prototype and our work effort shifted to the web based plugin discussed

in Section 2.3.2 below.

2.3.1.2 Lessons Learned

The approach relied on intercepting the network traffic at the protocol level and
recognizing from the network traffic when an authentication request had been
received from a server. This implies that the agent understands the protocol being
used well enough so that it can interpret the protocol traffic to identify the
authentication request. Every protocol has its own way of making an authentication
request; hence adding a new protocol to those that the agent understands involves
adding another protocol specific piece of code. While this is doable for most
standardized protocols, it can involve a large amount of effort.

An approach was developed, but not implemented, that would use a general
algorithm for capturing and responding to authentication requests from various
protocols. This approach would require specifying some key portions of a new
protocol, such as keywords that identify the authentication request and the format for
a response, and then would use a common portion of code to intercept the request and
respond in the appropriate format. Potentially, this could make adding a new
protocol to the agent much easier. However, there will always be some protocol
specific code that must be generated, and for complex protocols, this may be a
significant task.

An additional difficulty with the approach lies in the fact that many application
protocols are proprietary and, hence, details of the protocol needed by the agent are
not available. This implies that applications that use proprietary protocols, such as
SQLNet from Oracle, cannot be handle easily with the approach.

2.3.2 Single Sign-on Web Plugin

The single sign-on web plugin was developed to eliminate the need for a user to login to
each individual web server in a domain (such as darpa.mil) when the user needed to
retrieve information from multiple servers in the same domain[10].

18

Figure 6. Single Sign-on Web Plugin Architecture

Figure 6 illustrates the plugin architecture.

The plugin intercepts all web requests and can perform authentication and role-based
authorization. The plugin first asks for the user name and then queries the Radius
Server for the authentication requirements for the user. Based on the authentication
requirements for the user, the plugin generates a customized form for entering the
required authentication information and returns it to the user. For example, the form
may ask for a fixed password as well as a synchronous password.

When the user completes the authentication form, the plugin passes the information
to the authentication server for verification. If the verification is successful, the
authentication server returns the list of roles, to which the user is allowed, back to the
plugin. The plugin then generates a cookie that is used to allow reconnections for a
period of time without having to re-authenticate to the authentication server. The
cookie is encrypted and contains information on the user such as to what roles the
user is permitted and when the user authenticated himself.

On any subsequent request for pages from any web server in the same domain, the
browser automatically inserts the cookie. If the web server is running a plugin, then
the cookie is decrypted by the plugin and checked to see that the user authentication
has not expired and that the user is in a role that is allowed to see the web page
requested. In particular, single sign-on among web servers in the same domain is
supported in this manner.

19

The connection 1 (or 2) between the client and server is either http, or http over SSL.
In the case of SSL, the connection can be either server authenticated (the most
common use of SSL currently) or mutually authenticated (if the client has a
certificate and the server requires mutual authentication). For a mutually
authenticated connection, the plugin can pull out the client certificate and specific
information in the certificate and pass this on to the authentication server for

additional verification.

For a Netscape web server, role based authorization to specific web pages is enforced
by the plugin using the roles that are contained in the user’s cookie and the mapping
of roles to specific web pages that must be entered into the Netscape obj.conf
configuration file. A feasibility demonstration to automatically create the obj.conf
file was done using Napoleon, however, there currently is no other tool for modifying
the Netscape obj.conf file; i.e. it must be edited by hand. If all files on the web
server are either accessible or not based on the user’s role, then this is not hard.
Once you start adding more fine-grained access, this can get fairly complicated.

Usage Scenarios

1. No SSL on connection 1. The user could be required to authenticate before
getting access to the Web Server. This scenario probably has limited usefulness
since connection 1 is not encrypted.

9. Server authenticated SSL on connection 1. As in case 1, the client could be
required to authenticate to the server. In the short-term, this may be a very useful
scenario, since this form of SSL is what is currently dominant on the Web. Most
users will not have certificates, so user authentication could be done using an
authentication server. The plugin could also be used in heterogeneous situations
where some users have certificates and others use fixed passwords or tokens.

3. Mutual authentication via SSL. Both client and server have certificates and are
authenticated using SSL. The plugin could be used to pull off the client’s
certificate and use the information in it to check for certificate validity and client
authorizations. It could also be used to do additional authentication of the user.

2.3.2.1 Future Directions

The value of the single sign-on web plugin was recognized by Secure Computing’s
commercial authentication division and that division took the prototype developed
under this program and did the productization work necessary to add it as a feature to
Secure Computing’s SafeWord authentication product. Further development and
enhancements will be done as needed by this commercial division. This is a good
example of work from the IA program being successfully transitioned to a

commercial product.

2.3.2.2 Lessons Learned

The single sign-on web plugin was successful in solving the problem that it was
addressing and then was incorporated into a commercial product because the focus of

20

the work was well-defined and addressed an issue that was a commercial as well as a
Department of Defense problem. The solution used techniques that were being
developed by the commercial world as opposed to one-off solutions for government
work. The lesson to be learned here is that the DoD is currently running on
commercial products and so any solutions to specific DoD problems must be in the
context of the commercial products and involve approaches that are acceptable in the
commercial world. Otherwise, the rapid advance of commercial technology will
quickly obsolete any DoD specific solutions.

2.4 Distributed Object Security

The original focus of the distributed object security (DOS) task was on the Common
Object Request Broker Architecture(CORBA) and, in particular, developing a series
of more sophisticated firewall proxies for CORBA traffic over the Internet Inter-ORB
Protocol (IIOP). Because of redundancy in efforts between Secure Computing’s
proposed work and the work proposed by NAI Labs, the work performed by Secure
Computing was redirected to concentrate on CORBA access control and an initial
investigation into the security issues associated with Microsoft’s DCOM architecture.
As a result, there were three main achievements in this area:

e A basic IIOP proxy for Secure Computing’s Sidewinder firewall was developed.

e An approach for providing access control to CORBA method invocations was
developed.

e A study of DCOM security issues was undertaken and recommendations made on
possible uses of IA technology to augment DCOM security.

Each area is discussed in more detail below.

2.4.1 1IOP Proxy

Internet Inter-ORB Protocol (IIOP™) is the standard protocol employed by
CORBAT™! applications to access and invoke operations on objects in a distributed
environment using TCP/IP. When the distributed environment includes the Internet,
then the IIOP traffic must be able to pass through firewalls that are protecting the
enclaves where the application clients and servers run. However, application
firewalls will not allow IIOP traffic to pass through the firewall unless it is filtered by
an appropriate proxy that understands the IIOP protocol. A basic IIOP proxy for
Secure Computing’s Sidewinder application firewall was developed on this program.
The IIOP Proxy enables fine grained access control to CORBA objects, interfaces and
methods using well-known firewall techniques.

The design builds on Iona Technologies”” WonderWall™, an IIOP proxy for Orbix™
environments. The design includes details for integrating WonderWall with the
firewall features and operating system protection provided by Secure Computing’s

! [IOP and CORBA are registered trademarks of the Object Management Group (OMG).
2 WonderWall and Orbix are registered trademarks of Iona Technologies, Ltd.

21

Sidewinder.

In our implementation, WonderWall runs as a type enforced proxy on the Sidewinder.
It has been enhanced to include:

e support for transparent access
e support for multiple ports
e support for Visigenics and other non-Orbix servers
e easier configuration.
Access control is based on:
e message type
e source address
e destination address
e object key

¢ method invoked.

Client Sidewinder Server

Plan Server

Figure 7. IIOP Proxy Configuration

Figure 7 shows the basic proxy architecture. The proxy policy is configured using a
standard Sidewinder configuration file. Once configured, the proxy will only allow
IIOP traffic through the Sidewinder that satisfies the IIOP access control rules. The
Proxy Design[12] and User Guide[13] describe the system in more detail.

2.4.1.1 Future Directions

Although it was hoped that the IIOP proxy would eventually be transitioned to the
commercial division of Secure Computing for inclusion in the Sidewinder product,

22

there was never a sufficient commercial demand for the proxy that would justify the
extra work needed to convert the prototype into a product feature. In the rapidly
changing world of the Internet, the IIOP protocol has never caught on as an Internet
protocol that would need to be proxied through firewalls. In fact, in many cases the
solution that the CORBA vendors are providing uses http to tunnel IIOP through
firewalls since all firewalls already have http proxies.

2.4.1.2 Lessons Learned

When building the prototype, there were some specific lessons learned that apply to
the proxy technology under investigation. These include:

e Access control at the proxy is limited to control of the object class. In particular,
if several object instances of a class exist, the proxy cannot distinguish between
them.

e Use of approaches that bundle calls to increase performance (such as the “fine c2”
used by the composable services) limits granularity of access control that can be
enforced. In these approaches once the calls are bundled, a generic method is
called that transmits the bundle from client to server. The only access control that
can be performed at the proxy is on the generic method.

e Different vendors use different formats for their object identifiers. This implies
that a proxy will have to know a specific vendor format before it can successfully
proxy traffic for that vendor’s CORBA implementation. This is a problem that
the OMG is attempting to address.

Aside from these specific lessons, a more general lesson is that one can never know
for certain which technologies will predominate on the Internet when those
technologies are first introduced. When this program started, it appeared that IIOP
would be the next big Internet protocol and that it would be used instead of http for
complex applications. This has not happened, and, as a result, the need for
commercial IIOP proxies has been very limited.

2.4.2 CORBA Access Control

The goal of the CORBA Access Control effort was to fill in the gaps between what
DARPA needs and COTS implementations provide. While the CORBA Security
Specification (CORBASEC) had already been approved by the Object Management
Group (OMG), vendors were very slow in implementing the security features and no
implementations of level 2 CORBASEC were available when our work was
undertaken.

Secure Computing’s approach to this problem was based on identifying areas where
commercial CORBA implementations provide “hooks” for replaceable components.
Elements of the IA architecture would then be applied to fill in security gaps by
exploiting these replaceability features.

23

Application

Server

Interceptor

Interceptor

Client
Access
Check
Decision
Engine ¥
Decision
Engine

Figure 8. CORBA Access Control Using Interceptors

As shown in Figure 8, the approach used the interceptor feature supported by both
JIona Technology’s Orbix product and Visigenics’ Visibroker. Interceptors were
implemented on both the client and server sides that would intercept method
invocations. The interceptors would query the decision server and either allow or
disallow the invocation based on the policy specified in a decision server.

On the client side the user’s credentials were inserted, and on the server side, these
credentials were checked to determine whether access would be allowed. Three

different scenarios were prototyped:

e Visibroker Interceptors using SSL to provide the credentials and the
OGRI’s Pledge as the decision engine

e Visibroker Interceptors using IIOP Service Context to pass the credentials
and Pledge or Secure Computing’s Locké as the decision engine

e Orbix Filters using their “Interface” Context to pass the credentials and
Lock6 as the decision engine. :

As part of IFD 1.2, Secure Computing also integrated the Napoleon policy
management tool with the Interceptor/Pledge system to provide a means for defining
the policy that the Pledge decision engine would support and the interceptor would
enforce. The demonstration showed how the integrated system could be used to
control access to the Plan Server at that time being developed as one of DARPA’s

24

composable services.

2.4.2.1 Future Directions

The CORBA access control work was aimed at providing additional security that
CORBA vendors were not currently providing. Since the work was initiated, there
have been several commercial vendors who have developed products that implement
some or all of the security functionality that is present in CORBASEC level 2 and
which our work addressed. Any future work in this area should build on this
commercially available technology.

2.4.2.2 Lessons Learned

An issue that arose that goes beyond CORBA access control is what the best
architectural approach is for a policy decision server: centralized or distributed. With
a centralized approach, every access check is directed to the decision server. The
advantage of this approach is that it is more easily implemented and may be easier to
administer. The disadvantages are performance and reliability, since it provides a
single point of failure. With the distributed approach, the decision server is
decomposed into components that are either more location specific or application
specific. Such an approach is harder to implement, but should provide better
performance and reliability. In our opinion some version of the distribute approach is
preferred. In either case, for performance reasons caches should be used at the
enforcement mechanisms, if possible, to avoid having to make out-calls to the
decision server on each access control check.

2.4.3 DCOM Study

DCOM occupies a central part in Microsoft’s vision for distributed object oriented
computing. Microsoft has positioned DCOM as the “glue” which binds each machine
in the network together to form a cooperating whole, with goals of increased
performance, robustness, and availability while reducing costs. While such openness
is laudable, how does DCOM perform in an environment where an adversary is
actively seeking to disrupt the network harmony? Has Microsoft provided sufficient
strength in its security mechanisms supporting DCOM to thwart such an adversary?
The DCOM study[11] undertaken under this program was aimed at answering these
questions and suggesting possible enhancements to DCOM security based on IA
technologies.

During the course of the study we examined DCOM from a security perspective, both
architecturally and at the implementation level, but we did not attempt a detailed
vulnerability analysis. Rather, the focus was to reveal what security features
Microsoft has built into its product. DCOM is highly ubiquitous; it is bundled and
distributed with every Windows NT system (including 2000), and available at no cost
for Windows 9x systems. While Microsoft’s DCOM implementation does provide
some strong security features, including encryption, authenticated communications
and integrity mechanisms to prevent tampering, the base of these features is anchored
in the underlying Windows security architecture, such as the NT Lan Manager.

25

Windows 2000 introduced stronger mechanisms such as Kerberos V5. Such
mechanisms are indeed sufficient for many environments.

But what about our determined, well-heeled adversary? Rather than trying to point
out flaws in the Lan Manager and Kerberos protocols (which have been the focus of
other studies), we postulate that our adversary has succeeded. In such an eventuality,
how can we respond in a DCOM environment where the security functionality is
buried in the Microsoft source code? This study therefore focused its efforts on
highlighting areas where existing gaps and gaps exposed by an adversary can be
quickly filled by hooking alternate or additional security mechanisms into the
Microsoft architecture, without waiting for some future product release to close the

vulnerability.

DCOM relies heavily on the implementation of the underlying Security Service
Provider (SSP) to securely access DCOM objects. It is absolutely critical that the
protocols used in the SSP be sufficient for the environment where DCOM will be
employed, or all other attempts to bolster security will be in vain. The SSP is the
foundation on which all other security functions rest. Microsoft does publish the
specification for writing an SSP, butitis a substantial undertaking. One could author
a new SSP, such as one adding support for Type I cryptography, but the effort must
be well planned and executed in advance of the expected need or this approach will
fail due to its untimely deployment.

Other less drastic approaches documented in the study rely on and assume the
integrity of the SSP.

We examined a variety of techniques to incorporate new security functionality into
DCOM, and examined areas where existing infrastructure could be used to limit risk.

From this examination we concluded the following:

e The garbage collection mechanism of the DCOM protocol is vulnerable without
employing the authentication and ‘integrity features; both administrator and
component developer must be cognizant of the relative risk versus the tradeoff of
the performance penalty incurred when the security features are enabled.

e A role based policy can be constructed using the Microsoft Transaction Server
(MTS), but can only be used for server side controls. A finer grained security
policy can be constructed using Decision Engines from the IA program (Lock6,
Pledge and OODTE) in conjunction with the Napoleon tool for policy
construction and management.

e Managing a DCOM system is shown to be a frightful undertaking. The Microsoft
tools do not provide sufficient insight into the workings of the DCOM
configuration to get a good understanding of the security policy currently being
enforced. We show how the Napoleon tool can be used to aid in understanding of
an MTS role based policy and how it can be used to configure the IA decision

engines.

e Interceptors can be used to add additional security functionality using a security
component approach called a hook. The component developer is freed to

26

concentrate on the functionality of the component and relies on the security
features transparently enforced on its behalf by the interceptor.

e Firewalls can be used to support the DCOM protocol. We also provided
suggestions for additional functionality which would increase the security of the
system.

e NT shared library wrappers can be used to control which local shared library entry
points can be accessed by a DCOM component.

2.4.3.1 Future Directions

Although the DCOM study suggested possible areas where IA technology might be
used to increase DCOM security, no further work in actually developing these areas
was undertaken for a number of reasons. The primary one was that program
resources were redirected to other work that was of more interest and had more
potential payoff. However, another major reason for not pursuing additional work in
this area is that others on the program were already doing some of it (for example, the
NT library wrappers). Also there was some doubt as to the actual value that the work
might eventually have. For example, while a DCOM firewall proxy could be
implemented, as in the case with the IIOP proxy, there are very few Internet
applications that use DCOM as their protocol. Hence, there is little demand for a
DCOM firewall proxy. Similarly, while additional access control could be done
using some form of interceptor, there is a trade-off between the additional security
this would provide as opposed to the additional policy management complications it
would present. Windows NT and 2000 already have fairly complex security features,
which are often not managed correctly, and adding more may only add to the
confusion.

2.4.3.2 Lessons Learned

The primary lesson learned from the study is that the Microsoft DCOM and security
environment is relatively complex and inserting additional mechanisms into the
system that will reliably add additional security will not be easy. There are a variety
of ways to access resources in this environment and identifying and controlling them
all in a consistent manner will require different, coordinated mechanisms.

In addition, as mentioned in the above Future Directions section, many of the lessons
on the IIOP proxy also apply to a DCOM proxy as do the lessons learned for CORBA
access control regarding decision servers.

27

3 Summary

Secure Computing’s IAT program successfully contributed to a range of technology
areas that were of interest to DARPA. These areas included security architecture,
role based access control, single sign-on mechanisms, and distributed object security.
Much of the work from the program continues to progress, either as features in
commercial products or as the basis for on-going work in other programs. While
some of the work has been overtaken by advances in the fast-paced ‘commercial
world, even here, the insights gained on the program are valuable in identifying
future research areas. Overall, the program achieved significant progress in a variety
of security areas. '

28

4 References

[1] Secure Computing Corporation. Checkmate Architecture Model, Information
Assurance Technologies for the GCCS LES Program, CDRL A006. Sept 2000.

[2] Secure Computing Corporation. Checkmate User Guide, Information Assurance
Technologies for the GCCS LES Program, CDRL A011. Sept 2000.

[3] Tom Markham, Tomo Foote-Lennox, David Apostal, Alan Dowd, Raymond Lu, and
Richard O’Brien. Checkmate Network Security Modeling. Proceedings of Milcom 2000,
Oct 2000.

[4] Secure Computing Corporation. RBAC Framework Design, Information Assurance
Technologies for the GCCS LES Program, CDRL A012. Sept 2000.

[5] Secure Computing Corporation. Napoleon User Guide, Information Assurance
Technologies for the GCCS LES Program, CDRL A013. Oct 2000.

[6] Dan Thomsen, Dick O’Brien, and Jessica Bogle. Role based access control
framework for network enterprises. Proceedings of the Fourteenth Annual Computer
Security Applications Conference, 1998.

[7]D. Thomsen, R. C. O'Brien. Network Application POLicy EnvirONment
(NAPOLEON). Proceedings of the fourth ACM RBAC conference, pp. 134-142, Oct 28-
29 1999.

[8] C. Payne, D. Thomsen, J. Bogle, R. C. O'Brien. NAPOLEON: A recipe for workflow.
Proceedings of the Fifteenth Annual Computer Security Applications Conference, pp.
145-152, Dec 1999.

[9] D. Thomsen and R. O’Brien. Layered Security Policy Management Using Napoleon. .
Proceedings of Milcom 2000, Oct 2000.

[10] Secure Computing Corporation. Single Sign-on Plugin User Guide, Information
Assurance Technologies for the GCCS LES Program, CDRL A009. Sept 2000.

[11] Secure Computing Corporation. DCOM Security Report, Information Assurance
Technologies for the GCCS LES Program, CDRL A010. Sept 2000.

[12] Secure Computing Corporation. CORBA IIOP Proxy Design Report, Information
Assurance Technologies for the GCCS LES Program, CDRL A007. July 2000.

[13] Secure Computing Corporation. CORBA IIOP Proxy User Guide, Information
Assurance Technologies for the GCCS LES Program, CDRL A008. July 2000.

[14] Secure Computing Corporation. Policy Workshop I Report.

[15]Tom Markham, Dwight Colby, Mary Denz. Security Modeling in the COTS
Environment. New Security Paradigms Workshop, 1999.

29

[16] CERT Coordination Center http://www.cert.org
[17] Bugtraq http://www.geek-girl.com/resources .html
[18] RootShell http://www.rootshell.com/beta/news. html

[19] D. Sterne, G. Tally, C. McDonell, P. Pasturel, D. Sames, D. Sherman, E. Sebes,
"Scalable Access Control for Distributed Object Systems," Proceedings of the 8th
USENIX Security Symposium, Washington, DC, August 1999.

[20] T. Fraser, L. Badger, M. Feldman “Hardening COTS Software with Generic
Software Wrappers” Proceedings of the 1999 Symposium on Security and Privacy, pp. 2-
16, May 1999.

[21] M. Zurko, R. Simmon, “User-Centered Security,” New Security Paradigms
Workshop, September 1996.

30

MISSION
OF
AFRL/INFORMATION DIRECTORATE (IF)

I

The advancement and application of Information Systems Science

|

and Technology to meet Air Force unique requirements for ;I

Information Dominance and its transition to aerospace systems 10

meet Air Force needs.

